Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.27.21258591

ABSTRACT

1. A highly specific lateral flow test kit for SARS-CoV-2 S1 IgG+IgM antibodies was developed as a home-test assay with a LOD at 50IU/mL of pseudovirus neutralizing titer (PVNT). 2. After full vaccination with COVID-19 vaccines, 96.6% of the vaccinees successfully achieved the seroconversion of SARS-CoV-2 S1 IgG+IgM antibody. 3. Even though the S1 antibody level in 88% of the vaccinees vaccinated with inactivated virus vaccines dropped below the detection 2-6 months layer, one boost could quickly raise the S1 antibody titer above 50IU/mL, indicating the initial vaccination was successful and immunization memory was developed. Abstract Background: More than ten novel COVID-19 vaccines have been approved with protections against SARS-CoV-2 infections ranges between 52-95%. It is of great interest to the vaccinees who have received the COVID-19 vaccines, vaccine developers and authorities to identify the non-responders in a timely manner so intervention can take place by either giving additional boosts of the same vaccine or switching to a different vaccine to improve the protection against the SARS-CoV-2 infections. A robust correlation was seen between binding antibody titer and efficacy (p=0.93) in the clinic studies of 7 COVID-19 vaccines, so it is of urgency to develop a simple POCT for vaccinees to self-assess their immune response at home. Methods. Using CHO cell-expressed full length SARS-CoV2 S1 protein as coating antigen on colloidal gold particles, a SARS-CoV-2 S1 IgG-IgM antibody lateral flow test kit (POCT) was developed. The test was validated with negative human sera collected prior to the COVID-19 outbreaks, and blood samples from human subjects prior, during, and post-immunization of COVID-19 vaccines. Results. The specificity of the POCT was 99.0%, as examined against 947 normal human sera and 20 whole blood samples collected pre-immunization. The limit of detection was 50 IU/mL of pseudovirus neutralizing titer (PVNT) using human anti-SARS-2 neutralizing standards from convalescent sera. The sensitivity of POCT for SARS-CoV-2 S1 protein antibody IgG-IgM was compared with SARS-CoV-2 RBD antibody ELISA and determined to be 100% using 23 blood samples from vaccinated human subjects and 10 samples from non-vaccinated ones. Whole blood samples were collected from 119 human subjects (ages between 22-61 years) prior to, during, and post-vaccination of five different COVID-19 vaccines. Among them, 115 people tested positive for SARS-CoV-2 S1 antibodies (showing positive at least once) and 4 people tested negative (tested negative at least twice on different days), demonstrating 96.64% of seroconversion after full-vaccination. 92.3% (36/39) of the human subjects who were younger than 45 achieved seroconversion within 2 weeks while only 57.1% (4/7) of subjects older than 45 tested positive for S1 antibodies, suggesting that younger people develop protection much faster than older ones. Even though the S1 antibody level in 88% of human subjects vaccinated with inactivated virus dropped below 50 IU/mL two months later, one boost could quickly raise the S1 antibody titer above 50 IU/mL of PVNT, indicates that the initial vaccination was successful and immunization memory was developed. Conclusion: Using the lateral flow tests of SARS-CoV2 S1 IgG+IgM, vaccinated human subjects can easily self-assess the efficacy of their vaccination at home. The vaccine developer could quickly identify those non-responders and give them an additional boost to improve the efficacy of their vaccines. Vaccinees who failed in response could switch to different types of COVID-19 vaccines since there are more than 10 COVID-19 vaccines approved using three different platform technologies.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL